Chapter 6

XPath

Peter Wood (BBK)

XML Data Management

Introduction

@ XPath is a language that lets you identify particular parts of XML
documents

@ XPath interprets XML documents as nodes (with content)
organised in a tree structure

@ XPath indicates nodes by (relative) position, type, content, and
several other criteria

@ Basic syntax is somewhat similar to that used for navigating file
hierarchies

@ XPath 1.0 (1999) and 2.0 (2010) are W3C recommendations

Peter Wood (BBK) XML Data Management 117/ 245

http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath20/

Some Tools for XPath

@ Saxon (specifically Saxon-HE which implements XPath 2.0,
XQuery 1.0 and XSLT 2.0)

@ eXist-db (a native XML database supporting XPath 2.0, XQuery
1.0 and XSLT 1.0)

@ XPath Checker (add-on for Firefox)
@ XPath Expression Testbed (available online)

Peter Wood (BBK) XML Data Management 118/245

http://www.saxonica.com/documentation/
http://exist-db.org/
https://addons.mozilla.org/en-US/firefox/addon/xpath-checker/
http://www.whitebeam.org/library/guide/TechNotes/xpathtestbed.rhtm

Data Model

XPath’s data model has some non-obvious features:

@ The tree’s root node is not the same as the document’s root
(document) element

@ The tree’s root node contains the entire document including the
root element (and comments and processing instructions that
appear before it)

@ XPath’s data model does not include everything in the document:
XML declaration and DTD are not addressable

@ xmlns attributes are reported as namespace nodes

Peter Wood (BBK) XML Data Management 119/245

Data Model (2)

@ There are 6 types of node:

root

element

attribute

text

comment

processing instruction

vV VY VY VY VY

@ Element nodes have an associated set of attribute nodes
@ Attribute nodes are not children of element nodes

@ The order of child element nodes is significant

@ We will only consider the first 4 types of node

Peter Wood (BBK) XML Data Management 120/ 245

Example (1)

Recall our CD library example

<CD-library>
<CD number="724356690424">
<performance>
<composer>Frederic Chopin</composer>
<composition>Waltzes</composition>
<soloist>Dinu Lipatti</soloist>
<date>1950</date>
</performance>
</CD>

Peter Wood (BBK) XML Data Management

121/245

Example (2)

<CD number="419160-2">
<composer>Johannes Brahms</composer>
<soloist>Emil Gilels</soloist>
<performance>
<composition>Piano Concerto No. 2</composition>
<orchestra>Berlin Philharmonic</orchestra>
<conductor>Eugen Jochum</conductor>
<date>1972</date>
</performance>
<performance>
<composition>Fantasias Op. 116</composition>
<date>1976</date>
</performance>
</CD>

Peter Wood (BBK) XML Data Management

122/ 245

Example (3)

<CD number="449719-2">
<soloist>Martha Argerich</soloist>
<orchestra>London Symphony Orchestra</orchestra>
<conductor>Claudio Abbado</conductor>
<date>1968</date>
<performance>
<composer>Frederic Chopin</composer>
<composition>Piano Concerto No. 1</composition>
</performance>
<performance>
<composer>Franz Liszt</composer>
<composition>Piano Concerto No. 1</composition>
</performance>
</CD>

Peter Wood (BBK) XML Data Management

123/245

Example (4)

<CD number="430702-2">
<composer>Antonin Dvorak</composer>
<performance>
<composition>Symphony No. 9</composition>
<orchestra>Vienna Philharmonic</orchestra>
<conductor>Kirill Kondrashin</conductor>
<date>1980</date>
</performance>
<performance>
<composition>American Suite</composition>
<orchestra>Royal Philharmonic</orchestra>
<conductor>Antal Dorati</conductor>
<date>1984</date>
</performance>
</CD>
</CD-library>

Peter Wood (BBK) XML Data Management

124 /245

Example — Tree Structure

125/245

Location Path

@ The most useful XPath expression is a location path:
e.g., /CD-1library/CD/performance

@ A location path consists of at least one location step:
e.g., CD-library, CD and performance are location steps

@ A location step takes as input a set of nodes, also called the
context (to be defined more precisely later)

@ The location step expression is applied to this node set and
results in an output node set

@ This output node set is used as input for the next location step

Peter Wood (BBK) XML Data Management 126/ 245

Location Path (2)

@ There are two different kinds of location paths:

» Absolute location paths
» Relative location paths

@ An absolute location path

starts with /

is followed by a relative location path

is evaluated at the root (context) node of a document
e.g., /CD-1library/CD/performance

elative location path

is a sequence of location steps

each separated by /

evaluated with respect to some other context nodes
e.g., CD/performance

vV vyVvYy

oA

=

vV vyVvYy

Peter Wood (BBK) XML Data Management 127/ 245

Evaluation of absolute location path

XML Data Management 128 /245

Evaluation of absolute location path

128 /245

XPath

Evaluation of absolute location path
/CD-library

©
®)
NLSAALLL AN

Peter Wood (BBK) XML Data Management 128/ 245

XPath

Evaluation of absolute location path
/CD-1library/CD

©)
®)
NLSARLLLLANL

XML Data Management 128 /245

XPath

Evaluation of absolute location path
/CD-library/CD/performance

LAAAL LS SO

Peter Wood (BBK) XML Data Management 128/ 245

O

Location Step

@ In general, a location step in turn consists of a

» (navigation) axis

» node test

» predicate(s)
@ Syntax is axis :: node test [predicate] ... [predicate]
@ e.g., child: :CD[composer=’Johannes Brahms’]

» child is the axis
» CD is the node test
» composer=’Johannes Brahms’ is the predicate

@ A location step is applied to each node in the context (i.e., each
node becomes the context node)

@ All resulting nodes are added to the output set of this location step

Peter Wood (BBK) XML Data Management 129/ 245

XPath

Evaluation of predicate
/child::CD-1library/child::CD

©)
®)
NLSARLLLLANL

XML Data Management 130/245

XPath

Evaluation of predicate
/child: :CD-1library/child: :CD[composer=’Johannes Brahms’]

©
®)
NLSAALLL AN

Peter Wood (BBK) XML Data Management 130/ 245

Axes

@ An axis specifies what nodes, relative to the current context node,
to consider
@ There are 13 different axes (some can be abbreviated)

» self, abbreviated by .

child, abbreviated by empty axis

parent, abbreviated by ..

descendant-or-self, abbreviated by empty location step
descendant, ancestor, ancestor-or-self

following, following-sibling, preceding, preceding-sibling
attribute, abbreviated by @

namespace

vV VY VY VY VY VvYY

Peter Wood (BBK) XML Data Management 131/245

Axes

@ The following slides show (graphical) examples of the axes,
assuming the node in bold typeface is the context node

Peter Wood (BBK) XML Data Management 132/ 245

Self-Axis

@ The self-axis just contains the context node itself

Peter Wood (BBK) XML Data Management 133 /245

Child-Axis

@ The child-axis contains the children (direct descendants) of the
context node

Peter Wood (BBK) XML Data Management 134 /245

Parent-Axis

@ The parent-axis contains the parent (direct ancestor) of the
context node

Peter Wood (BBK) XML Data Management 135/ 245

Descendant-Axis

@ The descendant-axis contains all direct and indirect descendants
of the context node

Peter Wood (BBK) XML Data Management 136/ 245

Descendant-Or-Self-Axis

@ The descendant-or-self-axis contains all direct and indirect
descendants of the context node + the context node itself

Peter Wood (BBK) XML Data Management 137 /245

Ancestor-Axis

@ The ancestor-axis contains all direct and indirect ancestors of the
context node

Peter Wood (BBK) XML Data Management 138/ 245

Ancestor-Or-Self-Axis

@ The ancestor-or-self-axis contains all direct and indirect ancestors
of the context node + the context node itself

Peter Wood (BBK) XML Data Management 139/ 245

Following-Axis

@ The following-axis contains all nodes that begin after the context
node ends

Peter Wood (BBK) XML Data Management 140/ 245

Preceding-Axis

@ The preceding-axis contains all nodes that end before the context
node begins

Peter Wood (BBK) XML Data Management 141/ 245

Following-Sibling-Axes

@ The following-sibling-axis contains all following nodes that have
the same parent as the context node

Peter Wood (BBK) XML Data Management 142/ 245

Preceding-Sibling-Axis

@ The preceding-sibling-axis contains all preceding nodes that have
the same parent as the context node

Peter Wood (BBK) XML Data Management 143/ 245

Partitioning

@ The axes self, ancestor, descendant, following and preceding
partition a document into five disjoint subtrees:

Peter Wood (BBK) XML Data Management 144 / 245

Attribute-Axis

@ Attributes are handled in a special way in XPath

@ The attribute-axis contains all the attribute nodes of the context
node

@ This axis is empty if the context node is not an element node
@ Does not contain xmlns attributes used to declare namespaces

Peter Wood (BBK) XML Data Management 145/ 245

Namespace-Axis

@ The namespace-axis contains all namespaces in scope of the
context node

@ This axis is empty if the context node is not an element node

Peter Wood (BBK) XML Data Management 146 / 245

Node Tests

@ Once the correct relative position of a node has been identified the
type of a node can be tested

@ A node test further refines the nodes selected by the location step
@ A double colon :: separates the axis from the node test
@ There are seven different kinds of node tests

name

prefix: *

node ()

text ()

comment ()
processing-instruction()
*

Peter Wood (BBK) XML Data Management 147/ 245

Name

@ The name node test selects all elements with a matching name

» e.g., if our context is a set of 4 CD elements and the location step
uses the child axis, then we get element nodes with different

names
» we can use the name node test to return, e.g., only soloist
elements
@ Along the attribute-axis it matches all attributes with the same
name

Peter Wood (BBK) XML Data Management 148/ 245

Prefix:*

@ Along an element axis, all nodes whose namespace URlIs are the
same as the prefix are matched

@ This node test is also available for attribute nodes

Peter Wood (BBK) XML Data Management 149/ 245

Comment, Text, Processing-Instruction

@ comment () matches all comment nodes
@ text () matches all text nodes
@ processing-instruction() matches all processing instructions

Peter Wood (BBK) XML Data Management 150/ 245

Node and *

@ node() selects all nodes, regardless of type: attribute,
namespace, element, text, comment, processing instruction, and
root

@ x selects all element nodes, regardless of name

» If the axis is the attribute axis, then it selects all attribute nodes
» If the axis is the namespace axis, then is selects all namespace
nodes

Peter Wood (BBK) XML Data Management 151 /245

Key for full CD library example

Element name Abbreviation Colour
root black
library L white
cd C grey
performance p pink
composer C blue
composition green
soloist s yellow
conductor t red
orchestra o] brown
date d orange

Peter Wood (BBK)

XML Data Management

152 /245

Full CD library example

(P)
/‘o

‘.f/A\ 89 .\iA /A\’ll\

XPath

Example using * and node()
/CD-1library/CD/*/node ()

XML Data Management 154 /245

XPath

Example showing difference between * and node()
/CD-1library/CD/*/*

XML Data Management 155/ 245

XPath

Example using descendant
//composer Or /descendant-or-self: :node()/composer

(c)
00600006 G'G
ISLYINISLE90siNi

Peter Wood (BBK) XML Data Management 156 / 245

N\
.0

Another example using descendant

//performance/composer Of
/descendant-or-self::node()/child: :composer

N

ll\. .ll\ \

Peter Wood (BBK) XML Data Management

(0)
i ,fi\',}i’\

157 /245

Predicates

@ A node set can be reduced further with predicates

@ While each location step must have an axis and a node test
(which may be empty), a predicate is optional

@ A predicate contains a Boolean expression which is tested for
each node in the resulting node set

@ A predicate is enclosed in square brackets []

Peter Wood (BBK) XML Data Management 158/ 245

Predicates (2)

@ XPath supports a full complement of relational operators,
including =, >, <, >=, <=, I=

@ XPath also provides Boolean and and or operators to combine
expressions logically

@ In some cases a predicate may not be a Boolean; then XPath will
convert it to one implicitly (if that is possible):

» an empty node set is interpreted as false
» a non-empty node set is interpreted as true

Peter Wood (BBK) XML Data Management 159/ 245

Example using a predicate

//performance [composer]

OO, \\

l\ /A\\....

XML Data Management

m /A\ /A\

160/ 245

Another example using a predicate

//CD[performance/orchestral

©
PTiNRS: .\iA ll\’ll\

XML Data Management 161/245

