
XPath

Chapter 6

XPath

Peter Wood (BBK) XML Data Management 116 / 245

XPath

Introduction

XPath is a language that lets you identify particular parts of XML
documents
XPath interprets XML documents as nodes (with content)
organised in a tree structure
XPath indicates nodes by (relative) position, type, content, and
several other criteria
Basic syntax is somewhat similar to that used for navigating file
hierarchies
XPath 1.0 (1999) and 2.0 (2010) are W3C recommendations

Peter Wood (BBK) XML Data Management 117 / 245

http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath20/

XPath

Some Tools for XPath

Saxon (specifically Saxon-HE which implements XPath 2.0,
XQuery 1.0 and XSLT 2.0)
eXist-db (a native XML database supporting XPath 2.0, XQuery
1.0 and XSLT 1.0)
XPath Checker (add-on for Firefox)
XPath Expression Testbed (available online)

Peter Wood (BBK) XML Data Management 118 / 245

http://www.saxonica.com/documentation/
http://exist-db.org/
https://addons.mozilla.org/en-US/firefox/addon/xpath-checker/
http://www.whitebeam.org/library/guide/TechNotes/xpathtestbed.rhtm

XPath

Data Model

XPath’s data model has some non-obvious features:

The tree’s root node is not the same as the document’s root
(document) element
The tree’s root node contains the entire document including the
root element (and comments and processing instructions that
appear before it)
XPath’s data model does not include everything in the document:
XML declaration and DTD are not addressable
xmlns attributes are reported as namespace nodes

Peter Wood (BBK) XML Data Management 119 / 245

XPath

Data Model (2)

There are 6 types of node:
I root
I element
I attribute
I text
I comment
I processing instruction

Element nodes have an associated set of attribute nodes
Attribute nodes are not children of element nodes
The order of child element nodes is significant
We will only consider the first 4 types of node

Peter Wood (BBK) XML Data Management 120 / 245

XPath

Example (1)

Recall our CD library example

<CD-library>

<CD number="724356690424">

<performance>

<composer>Frederic Chopin</composer>

<composition>Waltzes</composition>

<soloist>Dinu Lipatti</soloist>

<date>1950</date>

</performance>

</CD>

...

Peter Wood (BBK) XML Data Management 121 / 245

XPath

Example (2)

...

<CD number="419160-2">

<composer>Johannes Brahms</composer>

<soloist>Emil Gilels</soloist>

<performance>

<composition>Piano Concerto No. 2</composition>

<orchestra>Berlin Philharmonic</orchestra>

<conductor>Eugen Jochum</conductor>

<date>1972</date>

</performance>

<performance>

<composition>Fantasias Op. 116</composition>

<date>1976</date>

</performance>

</CD>

...

Peter Wood (BBK) XML Data Management 122 / 245

XPath

Example (3)

...

<CD number="449719-2">

<soloist>Martha Argerich</soloist>

<orchestra>London Symphony Orchestra</orchestra>

<conductor>Claudio Abbado</conductor>

<date>1968</date>

<performance>

<composer>Frederic Chopin</composer>

<composition>Piano Concerto No. 1</composition>

</performance>

<performance>

<composer>Franz Liszt</composer>

<composition>Piano Concerto No. 1</composition>

</performance>

</CD>

...

Peter Wood (BBK) XML Data Management 123 / 245

XPath

Example (4)

...

<CD number="430702-2">

<composer>Antonin Dvorak</composer>

<performance>

<composition>Symphony No. 9</composition>

<orchestra>Vienna Philharmonic</orchestra>

<conductor>Kirill Kondrashin</conductor>

<date>1980</date>

</performance>

<performance>

<composition>American Suite</composition>

<orchestra>Royal Philharmonic</orchestra>

<conductor>Antal Dorati</conductor>

<date>1984</date>

</performance>

</CD>

</CD-library>

Peter Wood (BBK) XML Data Management 124 / 245

XPath

Example — Tree Structure

p c s p p s o t d p p c p p

C C C C

L

Peter Wood (BBK) XML Data Management 125 / 245

XPath

Location Path

The most useful XPath expression is a location path:
e.g., /CD-library/CD/performance
A location path consists of at least one location step:
e.g., CD-library, CD and performance are location steps
A location step takes as input a set of nodes, also called the
context (to be defined more precisely later)
The location step expression is applied to this node set and
results in an output node set
This output node set is used as input for the next location step

Peter Wood (BBK) XML Data Management 126 / 245

XPath

Location Path (2)

There are two different kinds of location paths:
I Absolute location paths
I Relative location paths

An absolute location path
I starts with /
I is followed by a relative location path
I is evaluated at the root (context) node of a document
I e.g., /CD-library/CD/performance

A relative location path
I is a sequence of location steps
I each separated by /
I evaluated with respect to some other context nodes
I e.g., CD/performance

Peter Wood (BBK) XML Data Management 127 / 245

XPath

Evaluation of absolute location path

/CD-library/CD/performance

p c s p p s o t d p p c p p

C C C C

L

Peter Wood (BBK) XML Data Management 128 / 245

XPath

Evaluation of absolute location path
/

CD-library/CD/performance

p c s p p s o t d p p c p p

C C C C

L

Peter Wood (BBK) XML Data Management 128 / 245

XPath

Evaluation of absolute location path
/CD-library

/CD/performance

p c s p p s o t d p p c p p

C C C C

LL

Peter Wood (BBK) XML Data Management 128 / 245

XPath

Evaluation of absolute location path
/CD-library/CD

/performance

p c s p p s o t d p p c p p

C C C C

L

C C C C

Peter Wood (BBK) XML Data Management 128 / 245

XPath

Evaluation of absolute location path
/CD-library/CD/performance

p c s p p s o t d p p c p p

C C C C

L

p p p p p p p

Peter Wood (BBK) XML Data Management 128 / 245

XPath

Location Step

In general, a location step in turn consists of a
I (navigation) axis
I node test
I predicate(s)

Syntax is axis :: node test [predicate] . . . [predicate]

e.g., child::CD[composer='Johannes Brahms']
I child is the axis
I CD is the node test
I composer='Johannes Brahms' is the predicate

A location step is applied to each node in the context (i.e., each
node becomes the context node)
All resulting nodes are added to the output set of this location step

Peter Wood (BBK) XML Data Management 129 / 245

XPath

Evaluation of predicate
/child::CD-library/child::CD

[composer='Johannes Brahms']

p c s p p s o t d p p c p p

C C C C

L

C C C C

Peter Wood (BBK) XML Data Management 130 / 245

XPath

Evaluation of predicate
/child::CD-library/child::CD[composer='Johannes Brahms']

p c s p p s o t d p p c p p

C C C C

L

C

Peter Wood (BBK) XML Data Management 130 / 245

XPath

Axes

An axis specifies what nodes, relative to the current context node,
to consider
There are 13 different axes (some can be abbreviated)

I self, abbreviated by .
I child, abbreviated by empty axis
I parent, abbreviated by ..
I descendant-or-self, abbreviated by empty location step
I descendant, ancestor, ancestor-or-self
I following, following-sibling, preceding, preceding-sibling
I attribute, abbreviated by @
I namespace

Peter Wood (BBK) XML Data Management 131 / 245

XPath

Axes

The following slides show (graphical) examples of the axes,
assuming the node in bold typeface is the context node

Peter Wood (BBK) XML Data Management 132 / 245

XPath

Self-Axis

The self-axis just contains the context node itself

Peter Wood (BBK) XML Data Management 133 / 245

XPath

Child-Axis

The child-axis contains the children (direct descendants) of the
context node

Peter Wood (BBK) XML Data Management 134 / 245

XPath

Parent-Axis

The parent-axis contains the parent (direct ancestor) of the
context node

Peter Wood (BBK) XML Data Management 135 / 245

XPath

Descendant-Axis

The descendant-axis contains all direct and indirect descendants
of the context node

Peter Wood (BBK) XML Data Management 136 / 245

XPath

Descendant-Or-Self-Axis

The descendant-or-self-axis contains all direct and indirect
descendants of the context node + the context node itself

Peter Wood (BBK) XML Data Management 137 / 245

XPath

Ancestor-Axis

The ancestor-axis contains all direct and indirect ancestors of the
context node

Peter Wood (BBK) XML Data Management 138 / 245

XPath

Ancestor-Or-Self-Axis

The ancestor-or-self-axis contains all direct and indirect ancestors
of the context node + the context node itself

Peter Wood (BBK) XML Data Management 139 / 245

XPath

Following-Axis

The following-axis contains all nodes that begin after the context
node ends

Peter Wood (BBK) XML Data Management 140 / 245

XPath

Preceding-Axis

The preceding-axis contains all nodes that end before the context
node begins

Peter Wood (BBK) XML Data Management 141 / 245

XPath

Following-Sibling-Axes

The following-sibling-axis contains all following nodes that have
the same parent as the context node

Peter Wood (BBK) XML Data Management 142 / 245

XPath

Preceding-Sibling-Axis

The preceding-sibling-axis contains all preceding nodes that have
the same parent as the context node

Peter Wood (BBK) XML Data Management 143 / 245

XPath

Partitioning

The axes self, ancestor, descendant, following and preceding
partition a document into five disjoint subtrees:

Peter Wood (BBK) XML Data Management 144 / 245

XPath

Attribute-Axis

Attributes are handled in a special way in XPath
The attribute-axis contains all the attribute nodes of the context
node
This axis is empty if the context node is not an element node
Does not contain xmlns attributes used to declare namespaces

Peter Wood (BBK) XML Data Management 145 / 245

XPath

Namespace-Axis

The namespace-axis contains all namespaces in scope of the
context node
This axis is empty if the context node is not an element node

Peter Wood (BBK) XML Data Management 146 / 245

XPath

Node Tests

Once the correct relative position of a node has been identified the
type of a node can be tested
A node test further refines the nodes selected by the location step
A double colon :: separates the axis from the node test
There are seven different kinds of node tests

name
prefix:*
node()

text()

comment()

processing-instruction()

*

Peter Wood (BBK) XML Data Management 147 / 245

XPath

Name

The name node test selects all elements with a matching name
I e.g., if our context is a set of 4 CD elements and the location step

uses the child axis, then we get element nodes with different
names

I we can use the name node test to return, e.g., only soloist

elements

Along the attribute-axis it matches all attributes with the same
name

Peter Wood (BBK) XML Data Management 148 / 245

XPath

Prefix:*

Along an element axis, all nodes whose namespace URIs are the
same as the prefix are matched
This node test is also available for attribute nodes

Peter Wood (BBK) XML Data Management 149 / 245

XPath

Comment, Text, Processing-Instruction

comment() matches all comment nodes
text() matches all text nodes
processing-instruction() matches all processing instructions

Peter Wood (BBK) XML Data Management 150 / 245

XPath

Node and *

node() selects all nodes, regardless of type: attribute,
namespace, element, text, comment, processing instruction, and
root
* selects all element nodes, regardless of name

I If the axis is the attribute axis, then it selects all attribute nodes
I If the axis is the namespace axis, then is selects all namespace

nodes

Peter Wood (BBK) XML Data Management 151 / 245

XPath

Key for full CD library example

Element name Abbreviation Colour
root black
library L white
cd C grey
performance p pink
composer c blue
composition green
soloist s yellow
conductor t red
orchestra o brown
date d orange

Peter Wood (BBK) XML Data Management 152 / 245

XPath

Full CD library example

p c s p p s o t d p p c p p

C C C C

L

Peter Wood (BBK) XML Data Management 153 / 245

XPath

Example using * and node()
/CD-library/CD/*/node()

p c s p p s o t d p p c p p

C C C C

L

Peter Wood (BBK) XML Data Management 154 / 245

XPath

Example showing difference between * and node()
/CD-library/CD/*/*

p c s p p s o t d p p c p p

C C C C

L

Peter Wood (BBK) XML Data Management 155 / 245

XPath

Example using descendant
//composer or /descendant-or-self::node()/composer

p c s p p s o t d p p c p p

C C C C

L

c c

Peter Wood (BBK) XML Data Management 156 / 245

XPath

Another example using descendant
//performance/composer or
/descendant-or-self::node()/child::composer

p c s p p s o t d p p c p p

C C C C

L

Peter Wood (BBK) XML Data Management 157 / 245

XPath

Predicates

A node set can be reduced further with predicates
While each location step must have an axis and a node test
(which may be empty), a predicate is optional
A predicate contains a Boolean expression which is tested for
each node in the resulting node set
A predicate is enclosed in square brackets []

Peter Wood (BBK) XML Data Management 158 / 245

XPath

Predicates (2)

XPath supports a full complement of relational operators,
including =, >, <, >=, <=, !=
XPath also provides Boolean and and or operators to combine
expressions logically
In some cases a predicate may not be a Boolean; then XPath will
convert it to one implicitly (if that is possible):

I an empty node set is interpreted as false
I a non-empty node set is interpreted as true

Peter Wood (BBK) XML Data Management 159 / 245

XPath

Example using a predicate

//performance[composer]

p c s p p s o t d p p c p p

C C C C

L

p p p

Peter Wood (BBK) XML Data Management 160 / 245

XPath

Another example using a predicate

//CD[performance/orchestra]

p c s p p s o t d p p c p p

C C C C

L

C C

Peter Wood (BBK) XML Data Management 161 / 245

