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Introduction

@ XPath is a language that lets you identify particular parts of XML
documents

@ XPath interprets XML documents as nodes (with content)
organised in a tree structure

@ XPath indicates nodes by (relative) position, type, content, and
several other criteria

@ Basic syntax is somewhat similar to that used for navigating file
hierarchies

@ XPath 1.0 (1999) and 2.0 (2010) are W3C recommendations
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http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath20/

Some Tools for XPath

@ Saxon (specifically Saxon-HE which implements XPath 2.0,
XQuery 1.0 and XSLT 2.0)

@ eXist-db (a native XML database supporting XPath 2.0, XQuery
1.0 and XSLT 1.0)

@ XPath Checker (add-on for Firefox)
@ XPath Expression Testbed (available online)
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http://www.saxonica.com/documentation/
http://exist-db.org/
https://addons.mozilla.org/en-US/firefox/addon/xpath-checker/
http://www.whitebeam.org/library/guide/TechNotes/xpathtestbed.rhtm

Data Model

XPath’s data model has some non-obvious features:

@ The tree’s root node is not the same as the document’s root
(document) element

@ The tree’s root node contains the entire document including the
root element (and comments and processing instructions that
appear before it)

@ XPath’s data model does not include everything in the document:
XML declaration and DTD are not addressable

@ xmlns attributes are reported as namespace nodes
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Data Model (2)

@ There are 6 types of node:

root

element

attribute

text

comment

processing instruction

vV VY VY VY VY

@ Element nodes have an associated set of attribute nodes
@ Attribute nodes are not children of element nodes

@ The order of child element nodes is significant

@ We will only consider the first 4 types of node
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Example (1)

Recall our CD library example

<CD-library>
<CD number="724356690424">
<performance>
<composer>Frederic Chopin</composer>
<composition>Waltzes</composition>
<soloist>Dinu Lipatti</soloist>
<date>1950</date>
</performance>
</CD>
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Example (2)

<CD number="419160-2">
<composer>Johannes Brahms</composer>
<soloist>Emil Gilels</soloist>
<performance>
<composition>Piano Concerto No. 2</composition>
<orchestra>Berlin Philharmonic</orchestra>
<conductor>Eugen Jochum</conductor>
<date>1972</date>
</performance>
<performance>
<composition>Fantasias Op. 116</composition>
<date>1976</date>
</performance>
</CD>
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Example (3)

<CD number="449719-2">
<soloist>Martha Argerich</soloist>
<orchestra>London Symphony Orchestra</orchestra>
<conductor>Claudio Abbado</conductor>
<date>1968</date>
<performance>
<composer>Frederic Chopin</composer>
<composition>Piano Concerto No. 1</composition>
</performance>
<performance>
<composer>Franz Liszt</composer>
<composition>Piano Concerto No. 1</composition>
</performance>
</CD>
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Example (4)

<CD number="430702-2">
<composer>Antonin Dvorak</composer>
<performance>
<composition>Symphony No. 9</composition>
<orchestra>Vienna Philharmonic</orchestra>
<conductor>Kirill Kondrashin</conductor>
<date>1980</date>
</performance>
<performance>
<composition>American Suite</composition>
<orchestra>Royal Philharmonic</orchestra>
<conductor>Antal Dorati</conductor>
<date>1984</date>
</performance>
</CD>
</CD-library>
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Example — Tree Structure
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Location Path

@ The most useful XPath expression is a location path:
e.g., /CD-1library/CD/performance

@ A location path consists of at least one location step:
e.g., CD-library, CD and performance are location steps

@ A location step takes as input a set of nodes, also called the
context (to be defined more precisely later)

@ The location step expression is applied to this node set and
results in an output node set

@ This output node set is used as input for the next location step
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Location Path (2)

@ There are two different kinds of location paths:

» Absolute location paths
» Relative location paths

@ An absolute location path

starts with /

is followed by a relative location path

is evaluated at the root (context) node of a document
e.g., /CD-1library/CD/performance

elative location path

is a sequence of location steps

each separated by /

evaluated with respect to some other context nodes
e.g., CD/performance
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Evaluation of absolute location path
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Evaluation of absolute location path
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XPath

Evaluation of absolute location path
/CD-library
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XPath

Evaluation of absolute location path
/CD-1library/CD
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XPath

Evaluation of absolute location path
/CD-library/CD/performance
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Location Step

@ In general, a location step in turn consists of a

» (navigation) axis

» node test

» predicate(s)
@ Syntax is axis :: node test [ predicate] ... [ predicate ]
@ e.g., child: :CD[composer=’Johannes Brahms’]

» child is the axis
» CD is the node test
» composer=’Johannes Brahms’ is the predicate

@ A location step is applied to each node in the context (i.e., each
node becomes the context node)

@ All resulting nodes are added to the output set of this location step
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XPath

Evaluation of predicate
/child::CD-1library/child::CD
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XPath

Evaluation of predicate
/child: :CD-1library/child: :CD[composer=’Johannes Brahms’]
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Axes

@ An axis specifies what nodes, relative to the current context node,
to consider
@ There are 13 different axes (some can be abbreviated)

» self, abbreviated by .

child, abbreviated by empty axis

parent, abbreviated by ..

descendant-or-self, abbreviated by empty location step
descendant, ancestor, ancestor-or-self

following, following-sibling, preceding, preceding-sibling
attribute, abbreviated by @

namespace

vV VY VY VY VY VvYY
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Axes

@ The following slides show (graphical) examples of the axes,
assuming the node in bold typeface is the context node
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Self-Axis

@ The self-axis just contains the context node itself
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Child-Axis

@ The child-axis contains the children (direct descendants) of the
context node
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Parent-Axis

@ The parent-axis contains the parent (direct ancestor) of the
context node
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Descendant-Axis

@ The descendant-axis contains all direct and indirect descendants
of the context node
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Descendant-Or-Self-Axis

@ The descendant-or-self-axis contains all direct and indirect
descendants of the context node + the context node itself
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Ancestor-Axis

@ The ancestor-axis contains all direct and indirect ancestors of the
context node
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Ancestor-Or-Self-Axis

@ The ancestor-or-self-axis contains all direct and indirect ancestors
of the context node + the context node itself
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Following-Axis

@ The following-axis contains all nodes that begin after the context
node ends
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Preceding-Axis

@ The preceding-axis contains all nodes that end before the context
node begins
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Following-Sibling-Axes

@ The following-sibling-axis contains all following nodes that have
the same parent as the context node
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Preceding-Sibling-Axis

@ The preceding-sibling-axis contains all preceding nodes that have
the same parent as the context node
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Partitioning

@ The axes self, ancestor, descendant, following and preceding
partition a document into five disjoint subtrees:
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Attribute-Axis

@ Attributes are handled in a special way in XPath

@ The attribute-axis contains all the attribute nodes of the context
node

@ This axis is empty if the context node is not an element node
@ Does not contain xmlns attributes used to declare namespaces
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Namespace-Axis

@ The namespace-axis contains all namespaces in scope of the
context node

@ This axis is empty if the context node is not an element node
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Node Tests

@ Once the correct relative position of a node has been identified the
type of a node can be tested

@ A node test further refines the nodes selected by the location step
@ A double colon :: separates the axis from the node test
@ There are seven different kinds of node tests

name

prefix: *

node ()

text ()

comment ()
processing-instruction()
*
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Name

@ The name node test selects all elements with a matching name

» e.g., if our context is a set of 4 CD elements and the location step
uses the child axis, then we get element nodes with different

names
» we can use the name node test to return, e.g., only soloist
elements
@ Along the attribute-axis it matches all attributes with the same
name
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Prefix:*

@ Along an element axis, all nodes whose namespace URlIs are the
same as the prefix are matched

@ This node test is also available for attribute nodes
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Comment, Text, Processing-Instruction

@ comment () matches all comment nodes
@ text () matches all text nodes
@ processing-instruction() matches all processing instructions
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Node and *

@ node() selects all nodes, regardless of type: attribute,
namespace, element, text, comment, processing instruction, and
root

@ x selects all element nodes, regardless of name

» If the axis is the attribute axis, then it selects all attribute nodes
» If the axis is the namespace axis, then is selects all namespace
nodes
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Key for full CD library example

Element name Abbreviation Colour
root black
library L white
cd C grey
performance p pink
composer C blue
composition green
soloist s yellow
conductor t red
orchestra o] brown
date d orange
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Full CD library example

(P)
/‘o

‘.f/A\ 89 .\iA /A\’ll\




XPath

Example using * and node()
/CD-1library/CD/*/node ()
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XPath

Example showing difference between * and node()
/CD-1library/CD/*/*
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XPath

Example using descendant
//composer Or /descendant-or-self: :node()/composer
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Another example using descendant

//performance/composer Of
/descendant-or-self::node()/child: :composer

N
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Predicates

@ A node set can be reduced further with predicates

@ While each location step must have an axis and a node test
(which may be empty), a predicate is optional

@ A predicate contains a Boolean expression which is tested for
each node in the resulting node set

@ A predicate is enclosed in square brackets [ ]
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Predicates (2)

@ XPath supports a full complement of relational operators,
including =, >, <, >=, <=, I=

@ XPath also provides Boolean and and or operators to combine
expressions logically

@ In some cases a predicate may not be a Boolean; then XPath will
convert it to one implicitly (if that is possible):

» an empty node set is interpreted as false
» a non-empty node set is interpreted as true
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Example using a predicate

//performance [composer]
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Another example using a predicate

//CD[performance/orchestral
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